Frequency of Obesity-Related Gene Variants in a European Population With Early-Onset, Severe Obesity

Presentation FC3.3

Jesús Argente, MD, PhD, presenting

Carel W. le Roux,¹ Jesus Dominguez-Riscart,² Maria Rosaria Licenziati,³ Leandro Soriano-Guillén,⁴ Belma Haliloglu,⁵ Anjali Zalin,⁶ Simona Filomena Madeo,⁷ Patrick Sleiman,⁸ Charles Savoie,⁸ Liya Kerem,⁹ Jesús Argente¹⁰

¹Diabetes Complications Research Centre, University College Dublin, Ireland; ²Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Andalusia, Spain; ³Neuro-Endocrine Diseases and Obesity Unit, Department of Neurosciences, Santobono-Pausilipon Children's Hospital, Naples, Italy; ⁴Hospital Universitario Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Spain; ⁵Department of Pediatrics and Pediatric Endocrinology and Diabetes, Marmara University Medical School, Istanbul, Turkey; ⁶Barts Health NHS Trust, London, UK and Bedfordshire Hospitals NHS Foundation Trust, Bedford, UK; ⁷Pediatric Unit, Department of Medical and Surgical Sciences of the Mother, Children and Adults, University of Modena, Italy; ⁸Rhythm Pharmaceuticals, Inc., Boston, MA, USA; ⁹Pediatric Endocrinology, Hadassah University Medical Center, Israel; ¹⁰Department of Pediatrics & Pediatric Endocrinology, Universidad Autónoma de Madrid, University Hospital Niño Jesús, CIBER "Fisiopatología de la obesidad y nutrición" (CIBEROBN), Instituto de Salud Carlos III, IMDEA Institute, Madrid, Spain

DISCLOSURE STATEMENT

Jesús Argente

 \square I have the following potential conflicts of interest to report:

 \square Research Contracts

- \blacksquare Consulting
- □ Employment in the Industry
- □ Stockholder of a healthcare company
- □ Owner of a healthcare company
- ☑ Other(s) speaking engagements and advisory boards for Rhythm Pharmaceuticals, Inc.

Rare Genetic Variants Can Lead to Hyperphagia and Early-Onset, Severe Obesity

- Rare variants in key genes of the MC4R pathway, a regulator of energy balance, are associated with hyperphagia (pathologic, insatiable hunger) and early-onset, severe obesity¹⁻⁶
- Patients with these variants often do not respond to traditional weight management strategies⁷

AgRP, agouti-related peptide; BBS, Bardet-Biedl syndrome; LEPR, leptin receptor; MC4R, melanocortin-4 receptor; MSH, melanocyte-stimulating hormone; NCOA1, nuclear receptor coactivator 1; PCSK1, proprotein convertase subtilisin/kexin type 1; POMC, proopiomelanocortin; SH2B1, SH2B adaptor protein 1.

*The SRC1 protein is encoded by NCOA1.

1. Huvenne et al. Obes Facts. 2016;9:158-173. 2. Yazdi et al. PeerJ. 2015;3:e856. 3. Yang et al. Nat Commun. 2019;10:1718. 4. Revelli et al. Obesity (Silver Spring). 2011;19:1010-1018. 5. Doche et al. J Clin Invest. 2012;122:4732-4736. 6. Ghamari-Langroudi et al. Sci Adv. 2018;4:eaat0866. 7. Clément et al. Physiol Behav. 2020;227:113134.

The Need for Genetic Testing

- Routine genetic testing can¹⁻⁵
 - Improve identification and diagnosis of individuals with hyperphagia and obesity caused by rare genetic variants
 - Inform specialized management strategies or eligibility for clinical trials
- Hyperphagia and obesity caused by rare genetic variants are likely underdiagnosed owing to low rates and limited access to genetic testing in individuals with obesity^{6,7}

A NO-CHARGE, GENETIC TESTING SOLUTION FOR RARE GENETIC DISEASES OF OBESITY

The Rare Obesity Advanced Diagnosis[®] (ROAD[®]) testing program aims to enhance genetic testing access for individuals with suspected rare genetic causes of obesity^{*}

Rare Obesity Advanced Diagnosis (ROAD) and its logo are registered trademarks of Rhythm Pharmaceuticals, Inc. *For questions about the ROAD[®] genetic testing program, including questions regarding criteria for sending samples, please contact Unilabs at roadgenetic@unilabs.com. **1.** Gregoric et al. *Front Endocrinol (Lausanne)*. 2021;12:689387. **2.** Styne et al. *J Clin Endocrinol Metab*. 2017;102:709-757. **3.** van der Valk et al. *Obes Rev*. 2019;20:795-804. **4.** Zorn et al. *Mol Cell Pediatr*. 2020;7:15. **5.** Huvenne et al. *Obes Facts*. 2016;9:158-173. **6.** Ayers et al. *J Clin Endocrinol Metab*. 2018;103:2601-2612. **7.** Clément et al. *Physiol Behav*. 2020;227:113134.

Analysis Objectives and Design of the ROAD[®] Program

- **Objectives of current analysis:**
- To assess the frequency of selected rare genetic variants in individuals with hallmark symptoms of potential underlying genetic causes of early-onset, severe obesity who were sequenced as part of the ROAD[®] genetic testing program
 - No-charge 79-gene and 1-chromosomal region panel for individuals living in participating regions^a who meet eligibility criteria
 - Testing is conducted by an ISO 15189 accredited clinical laboratory

Genes and chromosomal region sequenced										
ADCY3	ALMS1	BBS3 ^b	BBS18 ^c	AFF4	CREBBP	CUL4B	DNMT3A			
BBS1	BBS10	BBS12	BBS2	DYRK1B	EP300	HTR2C	INPP5E			
BBS4	BBS5	BBS7	BBS9 ^d	ISL1	KIDINS220	MAGEL2	MECP2			
BDNF	BBS21 ^e	BBS14 ^f	GNAS	MRAP2	NROB2	NRP1	NRP2			
IFT172	BBS19 ^g	BBS20 ^h	KSR2	PCNT	PHIP	PLXNA1	PLXNA2			
LEP	LEPR	BBS17 ⁱ	MC3R	PLXNA3	PLXNA4	PPARG	PROK2			
MC4R	BBS6 ^j	BBS13 ^k	NCOA1	RAB23	RPGRIP1L	RPS6KA3	SEMA3A			
NTRK2	PCSK1	PHF6	РОМС	SEMA3B	SEMA3C	SEMA3D	SEMA3E			
RAI1	BBS16 ¹	SH2B1	SIM1	SEMA3F	SEMA3G	TBX3	TRPC5			
BBS11 ^m	BBS8 ⁿ	BBS15°	CPE	TUB	UCP3	VPS13B	16p11.2 ^p			

Rare Obesity Advanced Diagnosis (ROAD) and its logo are registered trademarks of Rhythm Pharmaceuticals, Inc.

BBS, Bardet-Biedl syndrome; BMI, body mass index. ROAD, Rare Obesity Advanced Diagnosis. ^aSpain, Italy, Ireland, Turkey, Israel, the United Kingdom, and Germany. ^bARL6. ^cBBIP1. ^dPTHB1. ^eCFAP418. ^fCEP290. ^gIFT27. ^hIFT74. ⁱLZTFL1. ^jMKKS. ^kMKS1. ^lSDCCAG8. ^mTRIM32. ⁿTTC8. ^oWDPCP. ^pAssessment for rearrangement of the 16p11.2 chromosomal region.

European Society for Paediatric Endocrinology • September 21-23, 2023 • The Hague, The Netherlands

Baseline Characteristics of Sequenced Individuals

Parameter	Total (N=2,253)
Age, n (%)	
≥18 years	1,045 (46.4)
<18 years	1,208 (53.6)
Sex, n (%)	
Female	1,240 (55.0)
Male	1,010 (44.9)
Prefer not to disclose/not provided	3 (0.1)
Age of onset of obesity, mean (SD), y	6.9 (8.5)
BMI (patients aged ≥18 years), mean (SD), kg/m ²	44.2 (8.5)
BMI Z score (patients aged <18 years), mean (SD)	3.4 (0.9)

BMI, body mass index; SD, standard deviation.

European Society for Paediatric Endocrinology • September 21-23, 2023 • The Hague, The Netherlands

Approximately 31% of Individuals Tested in ROAD[®] Had Variants Potentially Eligible for Targeted MC4R Treatment

Sequencing Yield

				Genes	Number of individuals
		No variants identified		POMC biallelic	0
1,065 (47.3%)				PCSK1 biallelic	2
		Variants potentially eligible for targeted MC4R		LEPR biallelic	16
	707	treatment or individuals with variants being		BBS-associated genes	28
	(31.4%)	investigated in clinical trials46661Variants being investigated clinical(2.0%)(29.3%)trials		 EMANATE clinical trial eligible genes POMC/PCSK1/LEPR heterozygous NCOA1/SH2B1* homozygous, heterozygous, or compound heterozygous 	15 80
	481	Variants potentially eligible for targeted MC4R treatment		DAYBREAK clinical trial eligible genes Preidentified MC4R pathway–related genes 	566
	(21.3%)	Variants in other genes supportive of a diagnosis of genetic obesity		CPEMC3RPLXNA2SEMA3ECREBBPMC4RPLXNA3SEMA3FDNMT3AMECP2PLXNA4SEMA3GHTR2CMRAP2RPGRIP1LSIM1ISL1NRP1SEMA3ATBX3KSR2NRP2SEMA3BTRPC5LEPPHIPSEMA3CTUB	

MAGEL2

PLXNA1

SEMA3D

*Including the chromosomal 16p11.2 deletion encompassing *SH2B1*. BBS, Bardet-Biedl syndrome; MC4R, melanocortin-4 receptor.

European Society for Paediatric Endocrinology • September 21-23, 2023 • The Hague, The Netherlands

Summary and Conclusions

- The ROAD[®] testing program offers enhanced genetic testing access for individuals with suspected rare genetic causes of obesity in key genes of the MC4R pathway
- In this cohort of individuals with early-onset, severe obesity or clinical signs of BBS, 52.7% carried variants of the MC4R pathway or of another type of genetic obesity disorder, which could inform specialized management strategies
 - Approximately one-third of individuals carried variants in *POMC, PCSK1, LEPR, BBS-associated genes, or variants in other genes that are being investigated in clinical trials*

Genetic testing may elucidate the etiology of early-onset, severe obesity and expedite transition to specialized care

BBS, Bardet-Biedl syndrome; MC4R, melanocortin-4 receptor.