Cardiometabolic Results From a Phase 3 Trial of Setmelanotide in Acquired Hypothalamic Obesity

Placebo (n=39)

Jennifer L. Miller, Hanneke M. van Santen, Shana E. McCormack, Ashley Shoemaker, Slusan A. Phillips, Ashley ¹Pediatric Endocrinology, Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University of Florida, Gainesville, FL, USA; ²Princess Máxima Center for Pediatric Endocrinology, Wilhelmina Children's Hospital of Philadelphia Philadelphia, PA, USA; 5Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; 6Pediatric Endocrinology, Hospital for Sick Children, Department of Paediatrics, University of Toronto, Toronto, ON, Canada; ⁹Pediatric Endocrinology and Diabetes, Children's Minnesota, Saint Paul, MN, USA; ¹⁰Division of Pediatric Endocrinology and Diabetes, Department of Pediatric Endocrinology, Great Ormond Street Children's Hospital, London, UK; ¹²Genetics and Genomic Medicine Research and Teaching Department, UCL GOS Institute of Child Health, London, UK; 13 Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical Sciences and Medical School, Nagoya, Japan; 14 Rhythm Pharmaceuticals, Inc., Boston, MA, USA; 15 Department of Pediatrics and Pediatr Germany; ¹⁶Seattle Children's Research Institute, Seattle, WA, USA; ¹⁷Division of Endocrinology, Department of Pediatrics, University of Washington, Seattle, WA, USA

To download a PDF version of this presentation, please scan or visit

Introduction

- Melanocortin-4 receptor (MC4R) pathway signaling in the hypothalamus plays a critical role in the regulation of energy balance and body weight¹⁻³
- Injury to the hypothalamus (eg, tumor growth, surgical injury, radiation injury, inflammation due to infection, traumatic brain injury, hemorrhage) can impair MC4R pathway signaling and lead to acquired hypothalamic obesity (HO)^{2,4-8}
- Acquired HO is characterized by accelerated and sustained weight gain, often accompanied by hyperphagia (a chronic pathologic condition characterized by insatiable hunger, impaired satiety, and persistent abnormal food-seeking behaviors), energy imbalance, and obesity^{2,9,10}
- Sustained obesity in this patient population can lead to a significantly increased risk of developing cardiometabolic disease¹¹⁻¹³
- In the global Phase 3 TRANSCEND trial, treatment with setmelanotide, an MC4R agonist, led to statistically significant improvements across weight- and hunger-related parameters¹⁴
- The primary endpoint was met: there was a -19.8% placebo-adjusted reduction in body mass index after 52 weeks (at the rapeutic dose) of set melanotide treatment $(P<0.0001)^{14}$

Objectives

 To assess the cardiometabolic outcomes from baseline to Week 52 in the pivotal Phase 3 TRANSCEND trial (NCT05774756)

Methods

- Participants aged ≥4 years with body mass index ≥95th percentile (in those aged 4 to <18 years) or ≥30 kg/m² (in those aged ≥18 years) with acquired HO following hypothalamic tumor, lesion, or injury were included
- Participants were randomized 2:1 to setmelanotide (0.5 mg subcutaneously once daily, titrated up to 1.5-3.0 mg once daily based on age, weight, and tolerability) or placebo for up to 60 weeks
- Cardiometabolic parameters after 52 weeks on therapeutic dose (a secondary endpoint) were assessed via vital signs (blood pressure) and clinical laboratory tests of serum and urine at a central laboratory
- Serum proteomic analyses at 52 weeks (an exploratory endpoint) were also assessed at a central laboratory; subgroup and percentile analyses were post hoc

Setmelanotide (n=81)

Table 1. Baseline Demographics

	Setmeranotide (n-61)	Placebo (II-39)
Age, y		
Mean ± SD (range), y	19.2 ± 13.0 (4-65)	21.4 ± 15.5 (4-66)
Age <18 y, n (%)	48 (59.3)	23 (59.0)
Age ≥18 y, n (%)	33 (40.7)	16 (41.0)
Sex, n (%)		
Female	45 (55.6)	27 (69.2)
Male	36 (44.4)	12 (30.8)
Tumor/Damage type, n (%)		
Craniopharyngioma	63 (77.8)	30 (76.9)
Glioma	4 (4.9)	3 (7.7)
Astrocytoma	3 (3.7)	3 (7.7)
Germinoma	5 (6.2)	1 (2.6)
Hamartoma	1 (1.2)	1 (2.6)
Other and non–tumor related	5 (6.2)*	1 (2.6) [†]
Weight, mean (95% CI), kg	92.9 (84.4-101.4)	94.1 (81.5-106.7)
In participants aged ≥18 y, kg	115.6 (103.6-127.6)	124.2 (106.7-141.7)
BMI, mean (95% CI), kg/m ²	35.7 (33.7-37.8)	36.8 (33.8-39.8)
In participants aged ≥18 y, kg/m²	40.1 (36.7-43.6)	43.5 (38.5-48.4)
BMI Z score in participants aged 4 to <18 y, mean (95% CI) [‡]	3.72 (3.19-4.25)	3.37 (2.81-3.93)
Percentage of the 95th percentile of BMI in participants 4 to <18 y, mean (SD) [§]	132.3 (124.0-140.7)	128.6 (118.8-138.5)
*Arachnoid cyst, heterogeneous mass in the sunrasellar region involving the hypothalamus and ontic chiasm	mature teratoma (not classified as tumor by the	investigators given the benign course and

*Arachnoid cyst, heterogeneous mass in the suprasellar region involving the hypothalamus and optic chiasm, mature teratoma (not classified as tumor by the investigators given the benign course and the differentiated cell type), cavernous hemangioma (not classified as tumor by the investigators given it was considered a vascular malformation), and either craniopharyngioma or astrocytoma (not classified as tumor by the investigators given uncertainty of diagnosis). †Hypothalamic glioma pilocytic astrocytoma (not classified as tumor by the investigators given the differentiated cell type). ‡BMI Z score calculated according to the World Health Organization 2007 method. §Percentage of the 95th percentile of BMI calculated according to the Centers for Disease Control and Prevention 2022 method, BMI, body mass index: CI, confidence interval: SD, standard deviation.

Results

Baseline demographics were generally comparable between the treatment groups (Table 1)

Efficacy outcomes

 Setmelanotide treatment was associated with significant improvement across most cardiometabolic parameters and proteomic biomarkers, relative to placebo, after 52 weeks (Table 2)

Table 2. Change in Cardiometabolic Parameters at Week 52^{*}

	Setmela	Setmelanotide (n=81) Placebo (n=39)			
	Baseline, mean (95% CI)	LSM change at week 52 (95% CI)	Baseline, mean (95% CI)	LSM change at week 52 (95% CI)	<i>P</i> value [†]
Nonambulatory blood pressure					
Systolic blood pressure, mm Hg	112.4 (109.4, 115.4)	-2.8 (-5.2, -0.3; n=73)	114.9 (110.1, 119.8)	3.0 (-0.5, 6.4; n=37)	0.0081
Diastolic blood pressure, mm Hg	72.0 (69.5, 74.5)	-1.3 (-2.9, 0.4; n=73)	73.4 (69.8, 77.0)	2.8 (0.5, 5.1; n=37)	0.0056
Lipid Levels					
Total cholesterol, mmol/L	4.7 (4.4, 4.9)	-0.2 (-0.4, 0.0; n=67)	4.7 (4.4, 5.1)	0.2 (-0.1, 0.5; n=36)	0.0176
Low-density lipoprotein cholesterol, mmol/L	2.7 (2.5, 2.9)	-0.3 (-0.5, -0.1; n=66)	2.7 (2.4, 3.0)	0.1 (-0.1, 0.3; n=34)	0.0077
High-density lipoprotein cholesterol, mmol/L	1.2 (1.1, 1.2)	0.4 (0.3, 0.5; n=66)	1.1 (1.0, 1.2)	0.1 (0.0, 0.2; n=35)	0.0001
Triglycerides, mmol/L	1.7 (1.5, 1.9)	-0.6 (-0.8, -0.4; n=67)	2.1 (1.6, 2.6)	0.0 (-0.3, 0.2; n=36)	0.0003
Hematologic and chemistry param	neters				
HbA1c, %	5.5 (5.3, 5.7)	-0.3 (-0.3, -0.2; n=67)	5.4 (5.2, 5.6)	0.0 (-0.1, 0.1; n=35)	<0.0001
Aspartate aminotransferase, U/L	25.3 (22.5, 28.1)	-6.4 (-9.8, -3.0; n=66)	26.8 (19.9, 33.7)	1.1 (-3.5, 5.7; n=35)	0.0107
Alanine aminotransferase, U/L	31.3 (25.3, 37.2)	-13.9 (-20.1, -7.8; n=65)	30.8 (20.8, 40.8)	0.9 (-7.4, 9.3; n=35)	0.0051
Bilirubin, µmol/L	7.1 (6.3, 7.8)	1.5 (0.4, 2.6; n=66)	9.5 (6.5, 12.4)	0.1 (-1.5, 1.6; n=35)	0.1410
C-reactive protein, mg/L	7.8 (5.7, 9.9)	-2.5 (-4.3, -0.7; n=60)	7.9 (4.1, 11.8)	0.5 (-2.1, 3.1; n=29)	0.0631
Exploratory proteomic analyses					
C-peptide, ng/mL	4.3 (2.6, 6.0)	-2.3 (-2.8, -1.8; n=56)	4.0 (2.8, 5.2)	-0.4 (-1.0, 0.3; n=31)	<0.0001
Leptin, ng/mL	46.6 (37.3, 55.9)	-24.1 (-29.8, -18.3; n=56)	46.0 (34.6, 57.4)	-2.2 (-10.0, 5.6; n=30)	<0.0001
Insulin, μIU/mL	43.0 (32.8, 53.2)	-28.3 (-35.6, -21.1; n=55)	48.6 (27.8, 69.3)	-6.0 (-15.8, 3.9; n=30)	0.0005
*52 weeks at therapeutic dose. †Comparison of the change:	s from baseline, setmelanotide versu	ıs placebo. HbA1c, hemoglobin A1c; LSM, leas	st squares mean.		

 Fifty-two weeks of treatment was generally associated with small reductions in blood pressure with setmelanotide compared with increases in blood pressure with placebo across pediatric, adult, male, and female participants (Table 3)

Table 3. Change in Blood Pressure at Week 52* Across Age and Sex Subgroups

<1	2 y	≥12 to	<18 y	<1	8 y	≥1	8 y	Fen	nale	M	ale
SET (n=20)	PBO (n=10)	SET (n=25)	PBO (n=12)	SET (n=45)	PBO (n=22)	SET (n=28)	PBO (n=15)	SET (n=41)	PBO (n=25)	SET (n=32)	PBO (n=12)
+1.56	+0.21	-4.96	+4.49	-2.22	+2.45	-2.84	+4.27	-3.06	+4.85	-3.15	+0.34
	I	_east squar	es mean ch	nange from	baseline at	t week 52:	diastolic b	lood press	ure, mm Hç	9	
<1	2 y	≥12 to	<18 y	<1	8 y	≥1	8 y	Fen	nale	M	ale
SET (n=20)	PBO (n=10)	SET (n=25)	PBO (n=12)	SET (n=45)	PBO (n=22)	SET (n=28)	PBO (n=15)	SET (n=41)	PBO (n=25)	SET (n=32)	PBO (n=12)
-0.27	+3.57	-1.44	+2.42	-1.01	+2.89	-1.25	+3.18	-1.74	+3.75	+0.11	+0.74

 When evaluated using age-based percentiles for pediatric patients, setmelanotide was associated with decreases in blood pressure across age groups, consistent with the overall findings (Table 4)

Table 4. Change in Blood Pressure Percentiles at Week 52*

<18 y, percentile		≥18 y, mm Hg		
SET (n=38)	PBO (n=20)	SET (n=35)	PBO (n=17)	
-6.70	+0.50	-5.08	+2.13	
east squares mea	n change from basel	ine at week 52: diasto	olic blood pres	
<18 y, p	ercentile	≥18 y, mm Hg		
SET	PBO (n=20)	SET (n=35)	PBO (n=17)	
(n=38)	•			

Safety outcomes

- Setmelanotide was generally well tolerated
- The most frequent adverse events (≥20% in the setmelanotide arm) were skin hyperpigmentation, nausea, headache, vomiting, diarrhea, and injection site reactions
- Adverse events of blood pressure increase were observed in 1 participant (1.2%) who received setmelanotide and in 1 participant (2.6%) who received placebo
- Adverse events of hypertension were observed in 2 participants (2.5%) who received setmelanotide and in 2 participants (5.1%) who received placebo
- One serious adverse event was considered related to setmelanotide: hypernatremia (sodium levels 150-158 mmol/L [normal upper limit 145 mmol/L]), which resolved after 2 days with treatment
- There was 1 death due to seizures in a participant with a history of seizure disorder, which was not considered related to the study drug

Conclusions

- In the Phase 3 TRANSCEND trial in participants with acquired HO, statistically significant and clinically meaningful changes were observed in almost all cardiometabolic parameters
- Changes were observed across age groups, suggesting early intervention may confer long-term benefit on cardiometabolic health
- These results underscore the broader impact setmelanotide treatment may have beyond weight loss alone in patients with acquired HO

Future Directions

 A supplemental new drug application and marketing authorization application for setmelanotide in acquired HO have been submitted to the US Food and Drug Administration and the European Medicines Agency, respectively

Acknowledgments: This study was sponsored by Rhythm Pharmaceuticals, Inc. Editorial assistance was provided under the direction of the authors by Fingerpaint Medical and funded by

References: 1. Baldini et al. J Endocrinol. 2019;241:R1-R33. 2. Dimitri. Front Endocrinol (Lausanne). 2022;13:846880. 3. Hill et al. Neuroendocrinology. 2017;104:330-346. 4. Abuzzahab et al. Horm Res Paediatr. 2019;91:128-136. 5. Roth. Front Endocrinol (Lausanne). 2011;2:49. 6. Sohn et al. Cell. 2013;152:612-619. 7. Hochberg et al. Obes Rev. 2010;11:709-721. 8. Roth et al. Lancet Diabetes Endocrinol. 2024;12:380-389. 9. Van Iersel et al. Endocr Rev. 2019;40:193-235. 10. Roth and McCormack. Diabetes Obes Metab. 2024;26(suppl 2):34-45. 11. Dogra et al. Endocrine. 2022;78:123-134. 12. Pereira et al. Clin Endocrinol (Oxford). 2005;62:197-204. 13. Roth. J Clin Med. 2015;4:1774-1797. 14. Phillips et al. Oral presentation at ENDO 2025; July 12-15, 2025; San Francisco, CA.

Disclosures: JLM has received funding from Harmaceuticals, Inc., For the organization of the ESPE Science Symposium and 6th Craniopharyngioma Post-graduate Course; received funding from Harmaceuticals, Inc.; received funding from Hormaceuticals, Inc., Soleno Therapeutics. HMvS is a local primary investigator of clinical trials funded by Rhythm Pharmaceuticals, Inc.; received funding from Hormaceuticals, Inc.; recei Rhythm Pharmaceuticals, Inc.; and received funding for research projects from Pharmaceuticals, Inc. SAP has received funding for clinical trials and received funding for esearch support from the Friedreich Ataxia Research projects from Pharmaceuticals, Inc. SAP has received institutional funding for clinical trials and received funding for esearch support from the Friedreich Ataxia Research Alliance and Rhythm Pharmaceuticals, Inc. SAP has received institutional funding for clinical trials and received funding for esearch support from the Friedreich Ataxia Research Alliance and Rhythm Pharmaceuticals, Inc. SAP has received funding for clinical trials and received funding for esearch support from the Friedreich Ataxia Research support from the Friedreich Ataxia funding for clinical trials sponsored by Aardvark Therapeutics, Eli Lilly, Novo Nordisk, Rhythm Pharmaceuticals, Inc., and Soleno Therapeutics; and received institutional funding to conduct industry-sponsored clinical trials sponsored by Aardvark Therapeutics, Eli Lilly, Novo Nordisk, and Rhythm Pharmaceuticals, Inc. MJA receives institutional research support from Ascendis, Lumos, Mannkind, Medtronic, Rhythm Pharmaceuticals, Inc., and Soleno; and received consulting/speaking fees from Ascendis, DayOne, Endo, Neurocrine, Novo Nordisk, Rhythm Pharmaceuticals, Inc., and Soleno; and received consulting/speaking fees from Ascendis, DayOne, Endo, Neurocrine, Novo Nordisk, Rhythm Pharmaceuticals, Inc., and Soleno; and received consulting/speaking fees from Ascendis, DayOne, Endo, Neurocrine, Novo Nordisk, Rhythm Pharmaceuticals, Inc., and Soleno; and received consulting/speaking fees from Ascendis, DayOne, Endo, Neurocrine, Novo Nordisk, Rhythm Pharmaceuticals, Inc., and Soleno; and received consulting/speaking fees from Ascendis, DayOne, Endo, Neurocrine, Novo Nordisk, Rhythm Pharmaceuticals, Inc., and Soleno; and received consulting/speaking fees from Ascendis, DayOne, Endo, Neurocrine, Novo Nordisk, Rhythm Pharmaceuticals, Inc., and Soleno; and Soleno; and Soleno; and Soleno Neurocrine, Novo Nordisk, Rhythm Pharmaceuticals, Inc., and Novo Nordisk, Rh under the funding code 01GL2407A; received consulting and lecture fees from Chiesi, InfectoPharm, Merck Serono, Novo Nordisk, and Rhythm Pharmaceuticals, Inc.; and is chair of the Metabolic Unit at Boehringer Ingelheim Ulm UniversityBioCenter (BIU). MTD is a local primary investigator of clinical trials funded by Rhythm Pharmaceuticals, Inc.; and is chair of the Metabolic Unit at Boehringer Ingelheim Ulm UniversityBioCenter (BIU). MTD is a local primary investigator of clinical trials funded by Rhythm Pharmaceuticals, Inc.; and is chair of the Metabolic Unit at Boehringer Ingelheim Ulm UniversityBioCenter (BIU). MTD is a local primary investigator of clinical trials funded by Rhythm Pharmaceuticals, Inc.; and is chair of the Metabolic Unit at Boehringer Ingelheim Ulm UniversityBioCenter (BIU). MTD is a local primary investigator of clinical trials funded by Rhythm Pharmaceuticals, Inc.; and is chair of the Metabolic Unit at Boehringer Ingelheim Ulm UniversityBioCenter (BIU). MTD is a local primary investigator of clinical trials funded by Rhythm Pharmaceuticals, Inc.; and is chair of the Metabolic Unit at Boehringer Ingelheim Ulm UniversityBioCenter (BIU). MTD is a local primary investigator of clinical trials funded by Rhythm Pharmaceuticals, Inc.; and is chair of the Metabolic Unit at Boehringer Ingelheim Ulm UniversityBioCenter (BIU). MTD is a local primary investigator of the Metabolic Unit at Boehringer Ingelheim Ulm UniversityBioCenter (BIU). Lilly Japan K.K., Mitsubishi Tanabe Pharma Corporation, Novo Nordisk Pharma Ltd., and Rhythm Pharmaceuticals, Inc. CS and GY are employees and may hold stock options in Rhythm Pharmaceuticals, Inc. HLM has received reimbursement for scientific meetings (participation and travel expenses) and honoraria from Rhythm Pharmaceuticals, Inc. HLM has received reimbursement for scientific meetings (participation and travel expenses) and honoraria from Rhythm Pharmaceuticals, Inc. HLM has received reimbursement for scientific meetings (participation and travel expenses) and honoraria from Rhythm Pharmaceuticals, Inc. HLM has received reimbursement for scientific meetings (participation and travel expenses) and honoraria from Rhythm Pharmaceuticals, Inc. HLM has received reimbursement for scientific meetings (participation and travel expenses) and honoraria from Rhythm Pharmaceuticals, Inc. HLM has received reimbursement for scientific meetings (participation and travel expenses) and honoraria from Rhythm Pharmaceuticals, Inc. HLM has received reimbursement for scientific meetings (participation and travel expenses) and honoraria from Rhythm Pharmaceuticals, Inc. HLM has received reimbursement for scientific meetings (participation and travel expenses) and honoraria from Rhythm Pharmaceuticals, Inc. HLM has received reimbursement from the scientific meeting and travel expenses (participation and travel expenses). DKS2014.13). CLR is supported by grants from the National Institutes of Health (award numbers R21HD115119, R01DK135125, R01DK098466, and R01DK135211); and is on the advisory board of Rhythm Pharmaceuticals, Inc.